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Sampling 

 Continuous signals are digitized using digital computers  

 When we sample, we calculate the value of the 

continuous signal at discrete points  

 How fast do we sample  

 What is the value of each point  

 Quantization determines the value of each samples 

value  

 



Sampling Periodic Functions 

- Note that wb = Bandwidth, thus if                                then aliasing occurs  

(signal overlaps) 

-To avoid aliasing  

-According sampling theory:     
To hear music up to 20KHz a CD  

should sample at the rate of 44.1 KHz 



Discrete Time Fourier Transform 

 In likely we only have access to finite amount of data 

sequences (after sampling)  

 Recall for continuous time Fourier transform, when the 

signal is sampled:  

 

 

 Assuming 

 Discrete-Time Fourier Transform (DTFT):  



Discrete Time Fourier Transform 

 Discrete-Time Fourier Transform (DTFT):  

 

 

 A few points 

 DTFT is periodic in frequency with period of 2p 

 

 

 X[n] is a discrete signal  

 DTFT allows us to find the spectrum of the discrete signal 

as viewed from a window 

 



Example of Convolution 

 Convolution 

 We can write x[n] (a periodic function) as an infinite sum of 
the function xo[n] (a non-periodic function) shifted N units at a 
time  

 

 

 This will result 

 

 

 

 

 Thus 



Finding DTFT For periodic signals 

 Starting with xo[n] 

 

 

 DTFT of xo[n] 



DT Fourier Transforms 1. W is in radian and it is 

between 0 and 2p in each 

discrete time interval 

2. This is different from w where 

it was between – INF and + INF 

3. Note that X(W) is periodic 

 



Properties of DTFT  Remember: 

 For time scaling note that 

m>1  Signal spreading  



Discrete Fourier Transform 

 We often do not have an infinite amount of data which is 
required by DTFT 

 For example in a computer we cannot calculate uncountable 
infinite (continuum) of frequencies as required by DTFT 

 Thus, we  use DTF to look at finite segment of data  

 We only observe the data through a window 

 

 

 

 

 In this case the xo[n] is just a sampled data between n=0, n=N-
1 (N points) 

 



Discrete Fourier Transform 

 It turns out that DFT can be defined as  

 

 

 

 Note that in this case the points are spaced 2pi/N; thus 

the resolution of the samples of the frequency spectrum 

is 2pi/N.  

 

 We can think of DFT as one period of discrete Fourier 

series  



A short hand notation 

remember: 



Inverse of DFT 

 We can obtain the inverse of DFT 

 

 

 

 Note that  

 



Example of DFT  

 

 Find X[k]  

 

 We know k=1,.., 7; N=8 

 



Example of DFT 

Time shift Property of DFT 

Polar plot for  



Example of DFT 

Summation for X[k] 

Using the shift property! 



Example of IDFT 

Remember: 



Fast Fourier Transform Algorithms 

 Consider DTFT 

 

 

 

 

 

 

 Basic idea is to split the sum into 2 subsequences of 

length N/2 and continue all the way down until you 

have N/2 subsequences of length 2 

Log2(8) 

N 



Radix-2 FFT Algorithms - Two 

point FFT 

 We assume N=2^m  

 This is called Radix-2 FFT Algorithms  

 Let’s take a simple example where only two points are 

given n=0, n=1; N=2 

 

 

 

http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html 

y0 

y1 

y0 

Butterfly FFT 

Advantage: Less 

computationally 

intensive: N/2.log(N) 



General FFT Algorithm  

 First break x[n] into even and odd 

 

 

 Let n=2m for even and n=2m+1 for odd  

 Even and odd parts are both DFT of a N/2 point 

sequence 

 

 

 

 

 

 Break up the size N/2 subsequent in half by letting 

2mm 

 The first subsequence here is the term x[0], x[4], … 

 The second subsequent is x[2], x[6], …  
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Example 
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Let’s take a simple example where only two points are given n=0, n=1; N=2 
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Same result 



FFT Algorithms - Four point 

FFT 
First find even and odd parts and then combine them: 

The general form:  



FFT Algorithms - 8 point FFT 


